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AIIstrId-A growth law is derived which governs the propagation of a delamination embedded in a layered
plate, with the shapesofthedelaminated area and ofthe plateassumed to bearbitrary.1beplate isconsidered to
be subjected to edge loading.

INTRODUCTION
Debonded regions between layers of structural elements made of composite materials are
referred to as delaminations. In this paper we are concerned with problems involving growth of
delaminations in edge loaded layered plates such as that of an eUiptic delamination embedded in
a compressively loaded layered rectangular plate. Although the problem is essentially a three
dimensional one, the phenomenon of delamination growth can be modeled by nonlinear plate
theory together with a growth law in the spirit of the DCB models of crack growth in mode I
fracture. An example of such an approach can be found in Bottega lind Maewal[1] wherein a
one-dimensional model problem involving a penny shaped delamination in a circular plate was
considered, It is to the derivation of the growth law for the associated two dimensional momg
intermediate boundary problem that the present work is addressed.

Starting with the potential energy functional for the plate, the corresponding form of the
governing partial 4if!erential equations and boundary conditions are derived by using the
theorem of stationary potential energy coupled with a Griffith type fracture criterion where the
mobility of the moving intermediate boundary, the delamination edge, is taken into account.
The general form of the growth law is found as a consequence of the transversality condition
associated with the moving intermediate boundary.

Explicit forms of the general growth law for the class of problems of interest are found by
evaluating the strain energy density using a geometrically nonlinear plate theory to descn'be the
deformation of the layers. These reveal some interesting characteristics concerned with the
factors affecting growth.

GENERAL FORMS OFTHEGROWTH LAW AND GOVERNING EQUATIONS

Consider a layered plate occupying the region R with outer boundary So which contains a
region of delamination RIo bounded by the curve Slo (see Fig. 1). When the plate is subjected to the
generalized forces P(s) on So, reSUlting in the generalized"displacement field u(x), the region of
delamination grows to Rl with boundary SI where RIo E Rl E R and Xi are Cartesian coordinates in
the plane of the delamination. The bonded region of the plate is denoted by Ro such that
R1 U Ro== R.

In what follows, delamination growth is assumed to be governed by a Griffith type criterion
such that an energy release of r is required to produce a unit area of new delamination and r is
a characteristic of the bonding agent and layering material.

Let us define the energy functional n as*

n =<§{u,u'}- 'W + iF (1)

tSponsored by the National Science Foundation.
tAltbouab the growth of delamination is a nonc:onservative phenomenon, the definition of an energy functional is

justifiable if the growth is assumed to be monotonic at all points on the delamination edge.
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where

Fig. t. Arbitrary shaped delamination embedded in edge loaded arbitrary shaped layered plate (plan view).

C§{u, u'} = fRF(0,0') dx (2)

is the strain energy of the plate,

'W = ( P(S)· u(s) dsJso

is the work done by the applied loading,

(3)

(4)

is the energy absorbed during growth of the delamination, F(u,u') is the strain energy density of
the plate, r is the energy required to produce a unit area of delamination, and ( )' denotes
di1ferentiation with respect to each independent variable.

Equilibrium, under the restriction of monotonic growth of delamination, requires that the
first yariation of the energy functional vanish, i.e.

aTI=o. (5)

Upon examining (1)-(4) it is seen that eqn (5) requires the variation of functionals defined over
a region with a moving interior boundary.

For a functional of the type

with moving boundary S, the first variation of ] is given by [2]

(6)

where

(7)

(see Fig. 2) and up = (au/aXj).
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Fig. 2. Variation of function of two variables with moving boundary.

Applying the divergence theorem to the second integral in (6), and using (7), we arrive at the
following expression for the variation of the functional J defined on region R with moving
boundary S:

(8)

where p. is the outer normal to the surface Sand s is the path coordinate along the boundary.
The results presented to this point are quite general and apply to any number of dependent

variables which may correspond to deformations of a multi-layer plate, assuming an appropriate
theory for each layer. For the sake of brevity we now restrict our attention to cases where it is
only necessary to consider deformations of a single layer such as the case of symmetric
delamination buckling as occurs in a two layer plate. For such cases it is convenient to define
the array of dependent variables in the delaminated and bonded regions as follows

. {U; xjER1u=
U; x;ERo'

where

UI U UI U
V V

u= = w U= = W
W.x W.x

Us w,y Us W,y

(9)

(10)

and x=(Xh xi) =(x, y). In (10), U and v (U and V) correspond to the inplane layer deformations in
the x and ydirections respectively while w (W) corresponds to the transverse displacement of the
layer centerline.t

We also define the loading vector p(s) as follows:

PI(S) Px(s)
Py(s)

p(s)= = Pz(s) (11)
.Ilx(s)

Ps(s) ..«y(s)

t AIl.hough the develo~ment up to (8) is quite general and is valid for the approaches wherein. for example, both
~ran~latlOnal and angular dIsplacements are used as dependent variables, we now restrict our treatment to the specific form
Imphed by (10).
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where P" Pp and P, correspond to the components of the applied distributed force in the x, y,
and z directions respectively while .M, and .My correspond to the respective components of the
applied distributed bending moment.

Equation (8) in conjunction with (9Hll) can now be used to derive the variational
equations. Thus, with (8)-(11), eqn (5) becomes:

f 5 [ • 2 a aF] - f 2 5 aF
+ ~ F'Uj - ~ ~x. au.. BUjdx - ~~ ~U.. BUjILi ds

RoI=1 ,=IU, 1,1 SI,=II=Ju I,'

(12)

From (10) it can be seen that only three of the five dependent variables and hence only three of
the five BUi (and SUj) can be arbitrary. We therefore seek a relationship which will allow us to
express integrals of the form

f L tFjBuj dx
R i

in such a way that only variations of the first three dependent variables appear in integrals over
the region R. The first integral in (12) can be written as

where

2 a aF
~i = F,u - L---·

J i=1 ax; aUj,;

On setting j =3+ k we find the following relationship between the dependent variables

Using (15), the second integral on the r.h.s. of (13) becomes

f ±fijBuj dx = f ~3Bw dx +f ~ ~k BW,k dx
~1=3 ~ ~~

where

Further analysis is facilitated by use of the result

v.(wF) = F· Vw + wV . F

(13)

(14)

(15)

(16)

(17)

(18)
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where W is a scalar and F is a vector. Substituting 8w for w in the identity (18), rearranging
terms and integrating over R we have

fR F,V8w dx = fR V·(8wF)dx-fR8wV·Fdx.

On application of the divergence theorem, the above integral is transformed to

The second integral on the r.h.s. of (16) can now be written as

(19)

(20)

(21)

Substitution of (21), (17) and (16) into (13) gives the desired form of the first integral in (12)

where f1; is defined by (14). A similar expression is obtained for the third integral in (1~) by
replacing Uj with .!:!i. _

For arbitrary 8uj(8U j ) with j = 1,2,3, the corresponding coefficients in the integrands of the
regional integrals in (12) with (22) taken into account must vanish, resulting in the general form
of the governing partial differential equations. We thus have

2 a aF .
F.u.-L-a -a-=O; J= 1,2,

) i-I Xi Uj.i

Xk E R
"

2 a [aF 2 a aF]F - - 2---I-- =0
..... ~I aXk aW.k i-I ax; aW.ki '

(23a)

(23b)

2 a aF
F u.-~---=O;.) ,_I aXi aUj•i j = 1,2, IXk E Ro.

j = 3,4,5,

(24a)

(24b)

In a manner similar to above we arrive at the following matching and boundary conditions:

ulls, = Ulls,; j = 1,2, (25a)

wls, = w.kls, = 0; k = 1,2, (25b)

(25c)

(25d)[
2 aF] .

Pj = I au.. #J.i ; J = 1,2,
i-I I.' So

where we take Pj =0 for j =3-5.
The following general form of the growth law is obtained as a consequence of the

transversality condition resulting from the variations associated with the moving intermediate
boundary, i.e. from the requirements that the coefficient of 8Xi in (12) must vanish:

(Ftu, u')ls, -IR . GIs, = r. (26)
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In (26) we have used the definitions
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[F(u, u')h == [F(V, V') - F(u,u')]SI' (27)

(28)

Rjk == aF/aUj,b Rjk == aF/aUj,k

) (29)
Gjk == Uj,k, Gk == Uk1 J,

where «Jindicates the "jump" in a quantity across the delamination boundary.
Equation (28) can be simplified to the following form

where:

Mjk=Rik ; i=3+j; j=I,2,)

'l'jk = Gik ; i = 3+ j; j = 1,2.

(30)

(3Ia)

(3Ib)

Our analysis is now comltlete; its main result is the transversality condition (26)-in conjunction
with this and with the assumption of monotonic growth, we have the following growth
condition: if, under a given loading program, the resulting deformations are such that

[F(u, U')]SI - [R . GJs
j
> r (32)

growth will occur with the plate finally occupying the equilibrium configuration such that (26) is
satisfied at each point on the boundary of the delaminated area, No growth will occur
otherwise,

The quantity Djk is seen to be the (in plane) deformation gradient jump tensor and 'l'jk is the
(out of plane) rotation gradient tensor. It will be seen in the next section that Njk is the stress
resultant tensor and Mjk is the local bending moment tensor. The quantity IR· G)s/ therefore
represents the work done by the tractions and local moments across the delamInation edge due
to local discontinuities. Evidently, the growth law defined by (26) and (32) is a point wise
criterion which states that if. the sum of the jump in strain energy density at, and the negative of
the work done by the tractions and moments across, the delamination edge at a given point is
above a certain value r, growth will occur with the plate evolving to a final equilibrium
configuration such that a balance of the aforementioned quantities exists all along the edge.

EXPLICIT FORMS OF THE DELAMIN ATION GROWTH LA W

In this section the explicit form of the delamination growth law will be derived by assuming
a geometrically nonlinear plate theory to govern the layer deformations.
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The strain energy density for an isotropic, elastic layer is given by

C{[ 2 2 (t - v) 2 2 ]+2 U,x +V,y +-2-(u,y+v... ) + VU,xV,y

+[~w}+w./Y]}; Xi E R,

, C[ 2 2 (1- v) )2 2U V ]. D_F(U,U) = 2 U,x + V,y +-2-(U,y + V,x + v ... ,y , Xi E no
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(33a)

(33b)

where D = t2C/12, C =Et/(1- v2
), t is the layer thickness, E is Young's modulus for the layer and v

is Poisson's ratio for the layer. Substitution of (33) into (27) and (30) gives the following
expressions for (F(u, u')ls, and IR ' Gis,:

IF( '») - C{[U 2 V2 (t - v) 2 ]U,u s, -2 ... + 'Y+-2-(U,y+ v... ) +2vU,xV,y s,

where

- [ u} +V./ +(1; v) (us +V,x)2 +2vu,xV,yt,l
-~ [w,x/+ W,)').2+ 2VW,XXW,H +(1- v)w,x/]s,

Nxxls, = C[U,x + VV,y]s,

I
(1- v)

Nxy s, = C-2-[u,y + v,x]s,

N)·yls, = C[v,y + vU,x]s,

Mxxl s, = - D[ w,XX + VW,yy]s,

Myyls, = - D[w,yy + vW,xx]sr

(34)

(35)

(36a)

(36b)

(36c)

(36d)

(36e)

(360

Equations (26) and (32) in conjunction with (34)-{36) give the explicit form of the delamination
growth law in terms of a fixed Cartesian reference frame, The explicit forms of the lIoveming
partial cliftetentiat equations, matching conditions and boundary conditions can be obtained by
substitution of (33) into (23)-{25).
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Fig. 3. Coordinate transformation and local coordinate system at delamination edge,

It is of some interest to obtain the growth law in terms of a coordinate system whose axes
are aligned with the normal and tangential directions of the delamination edge. We do so in
what follows.

Let Bjk be the orthogonal transformation which transforms the vectors in the coordinate
system x into vectors in the coordinate system ~ at each point on SI where ~ forms a 'right
handed system (~, "I) in the normal and tangential directions respectively at the delamination
edge (see Fig. 3). We therefore have that

(37)

which relates the inplane deformations in the ~ coordinate system, Uj*, to the inplane
deformations in the original coordinate system, with

(38)

Similarly the resultant stress tensor, inplane deformation gradient jump tensor, local moment
tensor, and out of plane rotation gradient tensor, are related to their counterparts in the ~

coordinate system by

Njk =BpjBqkN:q

Djk =BpjBqkD:q

Mjk = Bp~qkM:q (39)

'l'jk = BpjBqk'l':q

where a superscript * denotes the tensor components in the f coordinate system. Since the
form of the strain energy density is invariant with respect to coordinate system, substitution of
(39) into (30) allows (26) to be written ast

IF(u*, u*'»)s/ -IR* . G*Ds/ = r (40)

tEquations (40H42) are with respect to a cartesian reference frame whose directions are normal and tangent to the
delamination eclae at a particular point and are shown. not for computational purposes, but to bring out certain salient
physical features. If one desires to investigate the relative contributions of individual modes of fracture and hence to
partition the eneraY release into terms associated with fracture modes I, II. and III, equations (26). (32) and (35) must be
written with respect to a curvilinear coordinate system whose directions run normal and parallel to the delamination edge
at each point.



where

and
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(41)

(42)

It is seen from (41) that only the normal and shear stresses and normal bending and torsional
moments at the delamination edge contribute to the growth of the delamination.

CONCLUDING REMARKS

A growth law has been derived which governs the evolution of an arbitrary shaped
delamination embedded in an edge loaded, arbitrary shaped, laminated plate. In principle, this
growth law can be used in conjunction with the set of governing partial differential equations,
boundary and matching conditions, obtainable from the general equations and conditions given,
for modeling any problem of this class where the initial delamination shape, plate shape, and
loading program is prescribed. Evidently the solution of such problems will require com­
putational approaches which are apparently yet to be developed. Chai [3) circumvented the
computational difficulties for an elliptical delamination in a layer-halfspace interface by assum­
ing that subsequent delamination shapes remain ellipses so that the functional for the debonded
area can be parameterized by the lengths of the axes of the ellipses. It may also be worthwhile
to note here that the growth law presented in this paper can be used in the analysis of a DCB
sPecimen where the applied loading is nonuniform along the edge, thus, in general, resulting in a
crack front which is not a straight line.
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concerniDa the preparation of the manuscript.

REFERENCES
\. W. J. Bottega and A. Maewal. Delamination buckling and growth in laminates. J. Appl. Mech. (1983).
2. I. M. Gelfand and S. V. Fomin, Calculus of Variations. p. 176. Prentice-Hall, New Jersey (1963).
3. H. Chai. The Growth of Impact Damage in Compressively Loaded Laminates. Ph.D. Thesis, California Institute of

Technology (1982).

55 Vol. 19. No. II-F


